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1. Introduction

The one sector optimal stochastic growth model (Brock and Mirman, 1972) is the canonical 
framework used by economists to examine problems of intertemporal resource allocation and 
more specifically, capital accumulation under uncertainty. It has been widely used as the basic 
model of macroeconomic growth under technology or productivity shocks and of optimal man-
agement of renewable natural resources affected by environmental uncertainty. Variations of the 
model have also been used to study business cycles.

In this model, a representative agent allocates the currently available output (of a single good) 
between investment and consumption where consumption generates immediate utility while in-
vestment generates next period’s output according to a production function that is subject to 
exogenous production shocks. In the standard version of the model, the exogenous shocks are in-
dependent and identically distributed over time. The agent maximizes expected discounted sum 
of utility from consumption where the discount factor, the utility function and the production 
function are invariant over time. In such a stationary framework, the intertemporal economic 
trade-offs faced by the agent are reflected in the optimal consumption policy function. This func-
tion, which specifies the amount consumed as a function of the current stock of output, has 
the property that when consumption over time is consistently chosen by following this policy, 
the path thereby generated is optimal among all paths feasible from the same initial stock. It is 
important to note that the consumption policy function specifies consumption as a function of 
current output, regardless of how and when that output level is reached. That is, it does not de-
pend on the date at which the current output is observed, and it does not depend on the history of 
output levels reached before the current output is observed.

Conditions for optimality play a very important role in understanding the nature of this optimal 
policy function. In a large class of applications where economists work with specific functional 
forms for utility and production functions, sufficient conditions for optimality help determine 
whether an explicitly specified policy function is actually optimal. Even when one cannot derive 
explicit solutions to the dynamic optimization problem, sufficient conditions for optimality are 
useful in showing that a certain implicitly defined (“candidate”) function is optimal. Necessary 
conditions for optimality are used to derive qualitative properties of optimal policy functions.

Optimality conditions for the dynamic optimization problem underlying the one sector 
stochastic growth model can also be useful in dynamic games of capital accumulation such as 
dynamic games of common property renewable resource extraction.1

In a convex framework (strictly concave utility, concave production function), the existing 
literature has used duality theory to derive a set of conditions that are both necessary and suffi-
cient for a policy function to be optimal and, in fact, to be the unique optimal policy function. 
In particular, an interior policy function (i.e., one where both consumption and investment are 
always strictly positive when the current stock of output is strictly positive) is optimal if, and 
only if, it satisfies the Euler condition (called the Ramsey–Euler equation in this literature) and a 
transversality condition (Mirman and Zilcha, 1975; Zilcha, 1976, 1978).2,3

1 See, for instance, Mitra and Sorger (2014).
2 Key contributions emphasizing the importance of the transversality condition in models of intertemporal resource 

allocation include Malinvaud (1953), Cass (1965), Shell (1969), Peleg and Ryder (1972) and Weitzman (1973).
3 That the Euler and transversality conditions are necessary and sufficient for optimality has been established for more 

general, convex dynamic optimization problems. See, among others, Stokey and Lucas (1989), Acemoglu (2009). Estab-
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The Ramsey–Euler equation is a simple first order condition that captures the trade-off be-
tween consumption in any two consecutive time periods, and takes the form of a functional 
equation. We refer to an interior consumption policy function satisfying this Ramsey–Euler equa-
tion as a Ramsey–Euler policy and this paper focuses on a systematic study of the optimality of 
such a policy.4

Using the characterization results mentioned above, a Ramsey–Euler policy can be shown 
to be an optimal policy, if it satisfies a transversality condition. The transversality condition 
essentially requires that the expected present values of capital stocks (valued by a shadow price 
equal to the discounted marginal utility of current consumption) converge to zero in the long run. 
It is an asymptotic condition on the entire stochastic process generated by the policy function.5

Verifying the transversality condition can be a non-trivial task when the stochastic process of 
output and consumption can reach levels arbitrarily close to zero infinitely often (for instance, on 
sample paths involving runs of bad realizations of the production shock) and the marginal utility 
of consumption is infinitely large at zero.

The key contribution of this paper is to develop an alternative sufficient condition for opti-
mality of a Ramsey–Euler policy. Our main result shows that a Ramsey–Euler policy function 
is optimal if it is continuous. Further, we show that the optimality of the Ramsey–Euler policy 
function also holds if the consumption and investment policies are both non-decreasing in current 
output.

As mentioned above, the fact that a policy function satisfies the Ramsey–Euler condition 
simply ensures that one-period deviation from the path prescribed by the policy function cannot 
be strictly gainful; it does not, in general, rule out the possibility that deviations from the path 
for an infinite number of periods may be gainful. The main theoretical insight offered by this 
paper is that for policy functions that satisfy basic properties such as continuity or monotonicity, 
satisfying the Ramsey–Euler condition is also sufficient to rule out gainful permanent deviations 
so that the policy function is optimal.

We establish this result by demonstrating that continuity of the Ramsey–Euler policy ensures 
that paths generated by this policy (from every initial stock) must satisfy the transversality con-
dition. The implication of this characterization result is that in applying the result, one does not 
need to verify the transversality condition.

It is well known in the literature that in this model, the optimal consumption policy function 
is unique, continuous, and both the optimal consumption and investment policy functions are 
non-decreasing (in fact, strictly increasing) in current output.6 This paper shows that some of 

lishing the necessity of transversality condition for optimality in general has been more challenging; see, Kamihigashi
(2001, 2003, 2005).

4 We should clarify at this point that, given an initial output, y > 0, a feasible (stochastic) path starting from y (with 
consumption and investment positive at every date and every realization of the random shock) satisfying the Ramsey–
Euler condition is often referred to as a Ramsey–Euler path. However, on such a path, only a certain proper subset of all 
positive output levels might ever be realized. A Ramsey–Euler policy , on the other hand, would have to specify consump-
tion for all positive output levels, in such a way that when consumption over time is consistently chosen by following 
this policy, the path thereby generated is always a Ramsey–Euler path.

5 For certain versions of our model, in checking for optimality of a Ramsey–Euler path (from an arbitrary initial stock) 
the transversality condition may be replaced by an infinite number of “period by period” conditions; see, Brock and 
Majumdar (1988), Dasgupta and Mitra (1988) and Nyarko (1988). Though such conditions have not been established for 
the discounted stochastic model considered in this paper, it is worth pointing out that like the transversality condition, 
these period-by-period conditions taken together involve the entire stochastic process of consumption and capital and 
establishing optimality by showing that all of them hold can be challenging.

6 See, for instance, Kamihigashi (2007).
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these global properties of the (consumption and investment) policy functions that have been 
shown to be necessary for optimality can also replace the transversality condition in the set of 
sufficient conditions for the optimality of a Ramsey–Euler policy.

Continuity or monotonicity of the Ramsey–Euler policy can be easily verified for a large class 
of applications of the stochastic growth model (including dynamic games of natural resource 
use). Our main result allows us to immediately verify optimality of explicit solutions to the Euler 
equation in certain applications with specific functional forms for the utility and production func-
tions where the policy function is linear. Linearity is however an exception, rather than the rule. 
As new examples are developed in the future with possibly non-linear Ramsey–Euler consump-
tion functions that may better fit reality, our result will continue to be useful as a way to readily 
establish optimality. Our main result can also be a useful theoretical tool in proving optimality 
of a policy function with no explicit form (see remarks at the end of Section 3.2).

Our alternative sufficient condition for optimality of a Ramsey–Euler policy is firmly rooted 
in the duality approach to the characterization of optimality. A different approach, based on 
dynamic programming concepts and methods, has also been explored in the literature. Roughly 
speaking, this method involves guessing the value function from the Ramsey–Euler condition 
and verifying that this “candidate” value function satisfies the functional equation of dynamic 
programming, also known as the Bellman equation (see, for instance, Stokey and Lucas, 1989). 
This approach is useful if the solution to the Bellman equation is unique (for instance, if the utility 
function is bounded below in the stochastic growth model). Recent advances have extended the 
applicability of this approach to unbounded utility functions; see, among others, Rincón-Zapatero 
and Rodriguez-Palmero (2003) and Matkowski and Nowak (2011). In the context of the canonical 
stochastic optimal growth model, we feel that our result is easier to implement.

The paper is organized as follows. Section 2 outlines the model, the assumptions and some 
definitions. Section 3 contains the main results of the paper, with Section 3.2 showing that our 
conditions are necessary and sufficient for optimality. Section 3.3 provides an example to demon-
strate that a Ramsey–Euler policy can be discontinuous (and non-monotone), and therefore that 
a Ramsey–Euler policy is not always optimal.7 The proof of the main result is contained in Sec-
tion 4. Section 5 contains an example to illustrate the fact that additional conditions may be 
needed to ensure optimality of Ramsey–Euler policy in a larger class of stochastic dynamic opti-
mization problems. Section 6 concludes. Appendix A contains proofs of minor results and details 
of the example in Section 3.3.

2. The model

We consider an infinite horizon one-good representative agent economy. Time is discrete and 
is indexed by t = 0, 1, 2, . . . . At each date t ≥ 0, the representative agent observes the current 
stock of output yt ∈R+ and chooses the level of current investment xt , and the current consump-
tion level ct , such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt .

This generates yt+1, the output stock next period through the relation

yt+1 = f (xt , rt+1)

7 There is a well-known example of a Ramsey–Euler path from an initial condition y > 0, which is not an optimal path
from that initial condition. As far as we know, our example is the first to specify a complete Ramsey–Euler policy which 
generates non-optimal paths from certain initial conditions.
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where f (x, r) is the production function and rt+1 is a random production shock realized at the 
beginning of period (t + 1).

2.1. Production

We now describe aspects of the above mentioned production process formally. We begin by 
specifying the nature of the exogenous shocks to production as follows.

(R.1) The sequence of random shocks {rt }∞t=1 is assumed to be an independent and identically 
distributed random process defined on a probability space (�, F, P), where the marginal dis-
tribution is denoted by μ. The support of this distribution function is a non-empty compact set 
I ⊂R. The distribution function corresponding to μ is denoted by F .

The production function is a map f from R+ × I to R+. We impose the following assump-
tions8 on the production function f :

(T.1) Given any r ∈ I , f (., r) is assumed to be continuous, strictly increasing and concave 
on R+, with f (0, r) = 0, and differentiable on R++, with f ′(·, r) > 0 on R++. Further, for any 
x ≥ 0, f (x, .) : I →R+, is a (Borel) measurable function.

Define the lower envelope production function f (x) : R+ → R+ by

f (x) = inf
r∈I

f (x, r).

It is easy to check that f (x) is non-decreasing on R+ and f (0) = 0. Further, f (x) is concave 
on R+. It follows that the “worst case” average productivity of investment [f (x)/x] is non-

increasing in x on R++. The upper envelope production function f (x) is defined on R+ by:

f (x) = sup
r∈I

f (x, r)

We assume the following end-point9 conditions on the production function:

(T.2)

(i) There is K > 0 such that
[
f (x)/x

]
< 1 for all x > K

(ii) limx↓0[f (x)/x] > 1

}
(E)

Note that (E)(ii) implies that the technology is productive near zero for all realizations of the 
production shock. It also implies that f (x) > 0 for all x > 0.

Given an initial stock y ≥ 0, a stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} is feasible from 
y if it satisfies y0 = y, and:

(i) ct (y,ω) ≥ 0, xt (y,ω) ≥ 0 for t ≥ 0
(ii) ct (y,ω) + xt (y,ω) ≤ yt (y,ω), yt+1(y,ω) = f (xt (y,ω), rt+1(ω)) for t ≥ 0

}
(F)

8 Note that we do not require the production function to be monotonic or continuous in the realization of the production 
shocks.

9 Note that we do not require the production function to satisfy the Inada condition at zero.
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and if for each t ≥ 0 {ct (y, ω), xt (y, ω)} are Ft adapted where Ft is the (sub) σ -field generated 
by partial history from periods 0 through t .10

It is straightforward to verify, using (E)(i), that if y ≥ 0, and {yt (y, ω), ct (y, ω), xt (y, ω)} is 
feasible from y, then:

yt (y,ω) ≤ K(y), ct (y,ω) ≤ K(y), xt (y,ω) ≤ K(y) for all t ≥ 0 (B)

where K(y) = max{y, K}, and K is given by (E)(i).

2.2. Preferences

Consumption in each period generates an immediate return according to a utility function, 
u : R++ → R. The following assumption is imposed on the utility function:

(U.1) u is continuously differentiable, strictly increasing and strictly concave on R++ with 
u′ > 0 on R++.

We define

u(0) ≡ lim
c↓0

u(c),

where the limit is allowed to be finite or −∞.
Finally, the agent discounts future utility using a time invariant discount factor denoted by 

ρ ∈ (0, 1).

2.3. The optimization problem

Given initial stock y ≥ 0, the representative agent’s objective is to maximize the expected 
value of the discounted sum of utilities from consumption:

E

[ ∞∑
t=0

ρtu(ct )

]
subject to feasibility constraints. Under our assumptions, for any feasible stochastic process 
{yt (y, ω), ct (y, ω), xt (y, ω)} from y ≥ 0, the objective of the representative agent

E

[ ∞∑
t=0

ρtu(ct (y,ω))

]
is well defined for any feasible stochastic process {yt(y, ω), ct (y, ω), xt (y, ω)} from y ≥ 0; it is 
bounded above by u(K(y))

1−ρ
, but it may equal −∞.

Given initial stock y ≥ 0, a feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} is optimal
from y if for every feasible stochastic process {y ′

t (y, ω), c′
t (y, ω), x′

t (y, ω)} from y,

E

[ ∞∑
t=0

ρtu(ct (y,ω))

]
≥ E

[ ∞∑
t=0

ρtu(c′
t (y,ω))

]
.

10 We skip formal definitions of sigma fields and sub sigma fields, following a referee’s suggestion, as these constructs 
are standard in the theory of stochastic processes.
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2.4. The optimal consumption function

A consumption (policy) function, is a function c :R+ →R+, satisfying:

0 ≤ c(y) ≤ y for all y ∈ R+
Note that this implies c(0) = 0. Associated with a consumption function c(·), is an investment 
(policy) function x : R+ →R, defined by

x(y) = y − c(y) for all y ∈ R+
Thus, the investment function x(·) satisfies:

0 ≤ x(y) ≤ y for all y ∈ R+
A feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} is said to be generated by a con-

sumption function c(y) from initial stock y ∈ R+ if for all ω ∈ �

y0(y,ω) = y; yt+1(y,ω) = f (yt (y,ω) − c(yt (y,ω)), rt+1(ω)) for t ≥ 0;
ct (y,ω) = c(yt (y,ω)), xt (y,ω) = x(yt (y,ω)) = yt (y,ω) − c(yt (y,ω)) for t ≥ 0.

A consumption function c(y) is called an optimal consumption function if for every y ∈ R+, 
the feasible stochastic process {yt (y, ω), ct (y, ω), xt (y, ω)} generated by c(y) is optimal from 
initial stock y.

3. Main results

3.1. Some definitions

The main purpose of this paper is to provide a set of tight and easily verifiable sufficient 
conditions for a consumption (policy) function to be optimal. To this end, we begin with a set of 
definitions.

A consumption function c(y) is said to be interior (or, to satisfy interiority) if

0 < c(y) < y for all y > 0.

An interior consumption function c(y) is said to satisfy the Ramsey–Euler condition if11

u′(c(y)) = ρ

∫
I

u′(c(f (y − c(y), r)))f ′(y − c(y), r)dF (r) for all y > 0 (RE)

In this case we refer to the consumption function c(y) as a Ramsey–Euler (consumption) policy.
For any interior consumption function c(y), the feasible stochastic process {yt (y, ω), 

ct (y, ω), xt (y, ω)} generated by the consumption function c(y) from any initial stock y > 0
satisfies:

yt (y,ω) > 0, ct (y,ω) > 0, xt (y,ω) > 0 for all t ≥ 0 and for all ω ∈ �. (P)

11 For each y > 0, the right-hand side of (RE) is ρ times the integral of a non-negative measurable function of r with 
respect to the distribution function F . It is therefore well defined. (RE) requires that the expression be finite and equal to 
u′(c(y)).
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An interior consumption function c(y) is said to satisfy the transversality condition if for all 
y > 0:

lim
t→∞ E{ρtu′(ct (y,ω))xt (y,ω)} = 0 (TC)

where {yt (y, ω), ct (y, ω), xt (y, ω)} is the feasible stochastic process generated by the consump-
tion function c(y) from initial stock y.

3.2. Main result: conditions for optimality

It is known that if a consumption function is interior, satisfies the Ramsey–Euler condition 
(RE) and the transversality condition (TC), then it is an optimal consumption function (Mirman 
and Zilcha, 1975). In other words, a Ramsey–Euler policy is optimal if it satisfies the transver-
sality condition (TC). The transversality condition (TC) has also been shown to be necessary for 
optimality of such a policy. In this section, we outline the main result of the paper: a new set 
of conditions for optimality of a Ramsey–Euler policy that does not involve the transversality 
condition (TC). In the proof of this result, we show that under our new optimality conditions, the 
transversality condition (TC) always holds.

As mentioned in Section 1, the Ramsey–Euler condition is simply a local (first order) 
condition for optimality that is based on the argument that a temporary deviation from the 
stochastic process generated by the candidate policy function should not be gainful. It does 
not rule out the possibility that a permanent deviation may be gainful and this possibility is 
exactly what a condition like the transversality condition (TC) excludes. Verifying the transver-
sality condition can be complicated (though by no means impossible), particularly when the 
stochastic process of output generated by the candidate consumption function is not necessar-
ily bounded away from zero and the marginal utility at zero is infinite. The complexity can, 
in fact, be gauged by looking at the proof of our main result where we verify the transver-
sality condition (TC). Without our result, in order to verify rigorously that a RE policy is 
optimal, one would have to provide a variation of such a proof and the particular varia-
tion would depend on the additional information known about the specific structure of the 
model.

The following example indicates how even in a setting with specific functional forms and 
a linear Ramsey–Euler consumption function, checking the transversality condition rigorously 
may not be trivial while application of our main result (Theorem 1, formally stated below) to 
ensure optimality of the consumption policy is indeed trivial.

Example 1. Consider the utility and production functions:

u(c) =
{

c1−η

1−η
, if c > 0

−∞, if c = 0

f (x, r) =
{

r(x1−η + β)
1

1−η , if x > 0
0, if x = 0

where

β > 0, η > 1, r ∈ I = [a, b],1 < a < b < ∞.
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Note that limx→0 f ′(x, r) = r ≥ a > 1. Further, assume that

ρE
(
r
−(η−1)
t

)
< 1 (1)

One can easily check that all assumptions in Section 2 are satisfied.12 It is easy to show that 
the following linear consumption function satisfies the Ramsey–Euler condition in the stochastic 
version of this problem:

c(y) = λy

where

λ = 1 −
[
ρE

(
r
−(η−1)
t

)]1/η ∈ (0,1),

using (1).
Observe that

f (x(y)) =
[
a((1 − λ)1−η + βyη−1)

1
1−η

]
y < y for all y > 0

if:

a(1 − λ) < 1

i.e., if:

ρ <
a−η

E
(
r
−(η−1)
t

) (2)

(2) is a stronger condition than (1) which was specified to ensure validity of the Ramsey–Euler 
consumption function c(y) specified above. Under (2), the stochastic consumption path gener-
ated by c(y) is not bounded away from zero (in fact, one can show that consumption enters every 
neighborhood of zero infinitely often with probability one13) and the stochastic process of dual 
prices (given by the marginal utility of consumption) is unbounded above. Verification of the 
transversality condition is by no means immediate.14 �

Our main result outlined below suggests alternative conditions under which a Ramsey–Euler 
policy is optimal. Because the transversality condition (TC) is a necessary condition of optimal-
ity, any alternative sufficient condition for optimality of a Ramsey–Euler policy must ensure the 
validity of the TC either explicitly or implicitly. We will show that continuity, a global property 
of the consumption function is sufficient to ensure that an interior Ramsey–Euler consumption 
function is optimal. In itself, this does not require us to verify any monotonicity property of the 
consumption function. However, from Brock and Mirman (1972, Lemma 1.1, p. 489), we know 

12 Benhabib and Rustichini (1994) first specified the deterministic version of this example with a linear optimal 
consumption function. In a dynamic common property resource game, Mitra and Sorger (2014) formally verify the 
transversality condition for this consumption function.
13 See, Mitra and Roy (2007), Proposition 2.
14 To verify the transversality condition directly in this case (i.e., without using the results in our paper) one may use 
a contraction argument based on the specific functional solution to the Ramsey–Euler condition. This was indicated 
by an anonymous referee. Such a contraction argument however cannot be readily extended to the general framework 
considered in this paper.
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that optimal consumption and investment must be strictly increasing in output. Thus, it must be 
the case that continuity of a Ramsey–Euler policy implies that both the consumption and invest-
ment functions are strictly increasing. It turns out that the converse is also true; continuity of a 
consumption function is also implied by the monotonicity of the consumption and investment 
functions. It is a simple and useful result, which we have not found explicitly mentioned in the 
literature and is stated below as a lemma.

Lemma 1. If c(y) is a consumption function such that c(y) and x(y) = y − c(y) are non-
decreasing on R+, then c(y) is continuous on R+.

The proof of Lemma 1 is contained in Appendix A. Note that Lemma 1 applies to any con-
sumption function including ones that do not satisfy interiority or the Ramsey–Euler condition. 
Lemma 1 allows us to establish an equivalence between continuity and monotonicity properties 
of a Ramsey–Euler consumption function.

We are now ready to state the main result:

Theorem 1. Suppose that c(·) is an interior consumption function. Then the following statements 
are equivalent:

(a) c(y) is continuous and satisfies the Ramsey–Euler condition (RE)
(b) c(y) and y − c(y) are nondecreasing on R+ and c(y) satisfies the Ramsey–Euler condition 

(RE)
(c) c(y) and y − c(y) are strictly increasing on R+ and c(y) satisfies the Ramsey–Euler condi-

tion (RE)
(d) c(y) is optimal

The proof of Theorem 1 is contained in Section 4.
In the literature on the one sector stochastic growth model, it is well known that an interior 

optimal consumption function must satisfy the Ramsey–Euler condition (see, for instance, The-
orem 1 in Mirman and Zilcha, 1975). Under the assumptions imposed in our model, there exists 
a unique optimal consumption function. If this consumption function is interior, then both opti-
mal consumption and optimal investment are continuous and strictly increasing in output (see, 
for instance, Theorem 2.1 in Kamihigashi, 2007).15 The contribution of Theorem 1 is to provide 
a new set of the sufficient conditions for optimality; a consumption function is optimal if it is 
interior, satisfies the Ramsey–Euler condition (RE) and is either continuous or (equivalently), 
consumption and investment are nondecreasing in output.

It should be noted that an optimal consumption function is necessarily interior if the util-
ity function satisfies the Inada condition at zero i.e., u′(c) → +∞ as c → 0, and in that case 
the statement of Theorem 1 can be appropriately modified to include interiority as one of the 
conditions that are necessary and sufficient for optimality of any consumption function.

Theorem 1 shows that for a policy function satisfying the Ramsey–Euler condition, which is 
a functional equation, continuity (or monotonicity) of the function is necessary and sufficient for 
the policy to be optimal. In doing so, it offers an exact characterization of when the stochastic 

15 While some of these results are usually established under the assumption that the utility function satisfies the Inada 
condition at zero (i.e., u′(c) → +∞ as c → 0) so that the optimal consumption function is interior, the actual proofs only 
use interiority.
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process generated by such a policy function satisfies the transversality condition. This equiva-
lence between the transversality property of the stochastic path generated by a Ramsey–Euler 
policy and certain global properties of the policy function is a basic theoretical insight. To the 
best of our knowledge, no such equivalence result has been established in the existing literature 
and indicates that it may be possible to develop alternative optimality conditions in a wider class 
of stochastic dynamic models.

Theorem 1 can be useful for practitioners who analyze the stochastic optimal growth model 
(or a dynamic optimization problem of similar structure, for instance in certain dynamic games 
of natural resource exploitation16) with specific functional forms for the utility and production 
functions and where a consumption function with an explicit functional form can be shown to 
satisfy the Ramsey–Euler condition. It allows us to verify optimality of this policy function with-
out having to analyze the asymptotic behavior of the present value of stochastic investment paths 
generated by the policy function and the stochastic production technology. With an explicit form 
for the consumption function, it is easy to directly check whether it is continuous or monotonic 
in output.

For instance, the interior Ramsey–Euler consumption function outlined in Example 1 is linear 
and hence continuous, so that Theorem 1 immediately shows that it is optimal without having to 
go through the task of verifying the transversality condition.17

However, Theorem 1 can also be useful in proving theoretical results when there is no explicit 
functional form for the “candidate” policy function. Depending on the economic problem being 
addressed, such a consumption function may be obtained from some other optimization problem 
or as the equilibrium of some other economic model, and the structure of these other problems 
may ensure continuity or monotonicity of this function.

For instance, consider finite horizon versions of the optimization problem in our model. Under 
certain standard assumptions, there exists a unique interior (initial period) optimal consumption 
function in such a finite horizon model. Now, consider a “candidate” consumption function that is 
defined as the point-wise limit of these optimal consumption functions (as the time horizon tends 
to infinity). Given that this is a dynamic optimization problem with unbounded immediate reward 
(utility), showing that the limit policy function is optimal in the infinite horizon case gets to be 
somewhat complicated. It is, however, easy to show that these finite horizon optimal consumption 
functions are continuous and monotonic (in the sense that both consumption and investment are 
non-decreasing in current output), that they satisfy the (initial period) Ramsey–Euler condition 
for the finite horizon problem, and that they are weakly decreasing over time. Taking appropriate 
limits, one can show that the limit consumption function satisfies the Ramsey–Euler condition 

16 See, among others, Levhari and Mirman (1980), Mitra and Sorger (2014).
17 As another simple application of our result, consider the well-known example, in which:

f (x, r) = rx1−α for all x ≥ 0 and for all r ∈ I ≡ [a, b]
with 0 < a < b < ∞, and α ∈ (0, 1), and:

u(c) = ln c for all c > 0

In this case, the consumption policy function:

c(y) = [1 − ρ(1 − α)]y for all y ≥ 0

is a Ramsey–Euler policy. Since it is clearly continuous, it is an optimal policy by Theorem 1. No other condition needs 
to be checked to arrive at this conclusion.
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for the infinite horizon problem and that consumption and investment are non-decreasing in 
output. Theorem 1 can now be directly applied to establish optimality of the limit consumption 
function.18

3.3. Non-optimal Ramsey–Euler policy: an example

Our main result on sufficiency in Section 3.2 (Theorem 1) indicates that an interior consump-
tion function satisfying the Ramsey–Euler condition is optimal if it is continuous. An important 
question that arises then is whether it is at all possible for an interior consumption function to 
be discontinuous and still satisfy the Ramsey–Euler condition. Of course, if there is such a con-
sumption function it would not be optimal because (as indicated in the previous subsection) every 
optimal consumption must be continuous. On the other hand, in the absence of any such example, 
one may have reason to be sceptical about the tightness of our sufficiency result; in particular, 
if every Ramsey–Euler policy function is automatically continuous, then continuity would be 
superfluous in the statement of our sufficient condition for optimality (just as transversality con-
dition is superfluous, given any continuous Ramsey–Euler policy). The example outlined below 
shows that this is not the case; there are Ramsey–Euler policies that are discontinuous.

In particular, we provide an example of an economy and an interior consumption function 
that satisfies the Ramsey–Euler condition (RE) but violates continuity; as one would expect (for 
instance, on the basis of Theorem 1), it is not an optimal consumption function. This consump-
tion function is also non-monotonic. The technology in this example is deterministic i.e., the 
production function is independent of random shocks (or equivalently, the random shocks have a 
degenerate distribution).19

Example 2. The deterministic production function f (x), the utility function u(c) and the dis-
count factor ρ are specified as follows:

(i) f (x) = 2x1/2 for all x ∈ [0,4]; f (x) = 2 + (1/2)x for all x > 4
(ii) u(c) = ln c for all c ∈ R++; u(0) ≡ limc↓0 u(c) = −∞
(iii) ρ ∈ (0,1)

⎫⎬⎭ (EX)

Note that (f, u, ρ) specified in (EX) satisfy all assumptions in Section 2. Assumption (T.2)(i) is 
satisfied by choosing (for instance) K = 4 and (T.2)(ii) is satisfied as [f (x)/x] → ∞ as x → 0.

Define a consumption function c(y) by:

c(y) =
{

(1 − (ρ/2))y for all 0 ≤ y ≤ 4
(1 − ρ)(y − 4) for all y > 4

(3)

Note that c is both discontinuous and non-monotone at y = 4.
Define the sets A, B by:

A = (0,4],B = (4,∞).

It is easy to check the following: (a) c is an interior consumption function, (b) if the initial stock 
y ∈ A, then the sequence {yt , ct , xt } generated by c has the property that yt ∈ A for all t ≥ 0, and 
(c) if the initial stock y ∈ B , then the sequence {yt , ct , xt } generated by c has the property that 

18 See, Mitra and Roy (2017), proof of Lemma 10, for such an application of Theorem 1.
19 The deterministic framework is a special case of the model described in Section 2, with I specified to be a singleton 
set, and is, in fact, a version of the well-known Ramsey–Cass–Koopmans model.
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yt ∈ B for all t ≥ 0. The details of (a)–(c) are contained in Appendix A. One implication of (b) 
and (c) is that in verifying the Ramsey–Euler equation (RE), one is never switching between the 
consumption functions given in the first and second lines of (3).

For the deterministic economy in this example, the Ramsey–Euler (RE) condition reduces to:

u′(c(y)) = ρu′(c(f (y − c(y)))f ′(x(y)) for all y > 0. (4)

One can check using (3),

u′(c(y)) = 1

(1 − (ρ/2))y
= ρu′(c(f (y − c(y)))f ′(x(y)) for any y ∈ A

and

u′(c(y)) = 1

(1 − ρ)(y − 4)
= ρu′(c(f (y − c(y)))f ′(x(y)) for any y ∈ B

so that c satisfies the Ramsey–Euler condition (4).
We now verify directly (i.e., without using Theorem 1) that c is not an optimal consumption 

function. To see this, choose y = 5 ∈ B . Then, c generates the sequence {yt , ct , xt } where yt ∈ B

and, in particular, yt > 4 for all t ≥ 0. Further, x(y) = y − (1 − ρ) > 4 so that f (x(y)) <
ρy + (1 − ρ)4 < y. This implies that the output sequence {yt} satisfies:

yt+1 < yt and yt > 4 for all t ≥ 0 (5)

and the corresponding consumption sequence {ct} satisfies:

ct = c(yt ) = (1 − ρ)(yt − 4) ≤ (1 − ρ)(y − 4) = (1 − ρ) < 1 for all t ≥ 0 (6)

However, the sequence {y′
t , c

′
t , x

′
t } from y = 5, given by:

x′
t = 1 for all t ≥ 0;y′

0 = 5, y′
t = 2 for all t ≥ 1; c′

0 = 4, c′
t = 1 for all t ≥ 1 (7)

is clearly feasible from y = 5. Notice that c′
t > ct for all t ≥ 0. Thus, the sequence {yt , ct , xt }

is not optimal from y = 5, and consequently c is not an optimal consumption function. In 
Appendix A, we verify explicitly (i.e., without using the standard characterization result of op-
timality given in Mirman and Zilcha, 1975) that the sequence {yt , ct , xt } from y = 5 does not 
satisfy the transversality condition.20 This concludes the example. �
4. Proof of main result

This section contains the proof of Theorem 1 which is the main result in this paper. The proof 
is based on a more general lemma stated below.

Lemma 2. Suppose c(·) is a consumption function satisfying the following conditions:

(i) c(y) is interior
(ii) x(y) = y − c(y) is non-decreasing on R+

(iii) for every y1, y2 satisfying 0 < y1 ≤ y2,

20 This is in response to a suggestion by an anonymous referee.
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inf{c(y) : y ∈ [y1, y2]} > 0

(iv) c(y) satisfies the Ramsey–Euler condition (RE).

Then c(·) is an optimal consumption function.

Lemma 2 indicates that an interior consumption function that satisfies the Ramsey–Euler 
equation is optimal as long as the associated investment function is non-decreasing and, in addi-
tion, consumption on every strictly positive closed interval is bounded away from zero. If these 
conditions are satisfied, then the transversality condition (TC) is automatically satisfied, so that 
the candidate consumption function is optimal. Before coming to the proof of Lemma 2, we first 
indicate how the proof of Theorem 1 follows from Lemma 2.

Proof of Theorem 1. As c(y) is continuous on R+, for any y1, y2 satisfying 0 < y1 ≤ y2, there 
exists z ∈ [y1,y2] such that c(z) = inf{c(y) : y ∈ [y1,y2]} and using interiority of c(y),we have 
that c(z) > 0 so that condition (iii) of Lemma 2 is satisfied. Next, we show that x(y) = y − c(y)

is non-decreasing on R+. To see this, suppose to the contrary that there exists y′ > y ≥ 0 such 
that 0 ≤ x(y′) < x(y). Since x(0) = 0, we must have y > 0. As c(.) is interior, we must have 
z ≡ x(y ′) > 0. As c(.) is continuous on R+, so is x(.). Since x(0) = 0 < z = x(y′) < x(y), 
we can use the intermediate value theorem to find y′′ ∈ (0, y), such that x(y′′) = z ≡ x(y′). 
Now using the Ramsey–Euler equation (RE) for y′ and y′′ and noting that y′ − c(y′) = x(y′), 
y′′ − c(y′′) = x(y′′) we get

u′(c(y′)) = ρ

∫
I

u′(c(f (x(y′), r)))f ′(x(y′), r)dF (r) (8)

u′(c(y′′)) = ρ

∫
I

u′(c(f (x(y′′), r)))f ′(x(y′′), r)dF (r) (9)

As x(y′) = x(y′′), the right hand expressions in (8) and (9) are equal so that

u′(c(y′)) = u′(c(y′′)) (10)

But y′′ < y < y′ and x(y′) = x(y′′) implies that

c(y′) = y′ − x(y′) > y′′ − x(y′′) = c(y′′)

which contradicts (10) since u is strictly concave on R++. Thus, x(y) = y − c(y) is non-
decreasing on R+. We have now verified that conditions (i)–(iv) of Lemma 2 hold. Theorem 1
follows. �

We now turn to the proof of Lemma 2. We use duality theory to establish the lemma. From 
the stochastic path (of consumption, output and investment) generated by the Ramsey–Euler 
consumption function, we define the stochastic process of dual prices (where the price in each 
period equals the present value of the marginal utility of consumption). The proof proceeds 
through the following steps:

1. Establish competitive properties of the consumption and investment path
2. Show that the Transversality Condition holds
3. Establish optimality
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Steps 1 and 3 rely on existing arguments. The key innovation in the proof is in Step 2 where we 
show that the transversality condition (TC) necessarily holds. In other words, to prove Lemma 2, 
we verify the transversality condition, so that in applying the lemma, one does not have to. 
Verifying the transversality condition essentially reduces to showing that the expected value of 
output converges to zero in the long run.

The difficulty in the proof arises when the consumption function is such that in a neighborhood 
of zero, output may decline for “bad” realizations of the shock; as a result the stochastic process 
of output, and hence consumption, may be arbitrarily close to zero. In the latter case (Case (ii) 
of Step 2 in the proof), there are possible sample paths along which prices and therefore the 
realized value of output may be bounded away from zero and may even diverge to infinity. The 
proof proceeds to show that despite all this, the expectation of the value of output converges to 
zero. This is achieved by showing in three sub-steps that:

a. If there are sample paths of output that get arbitrarily close to zero, then (as the technology 
allows for growth with certainty near zero) there must be serious under-investment when output 
is small and in particular, the propensity to consume must be bounded away from zero.

b. The expected prices are uniformly bounded over time even if the sample paths get close 
to zero; this is achieved by comparing the expected discounted sum of utility generated by the 
consumption function to a specifically chosen comparison feasible path where consumption is 
bounded away from zero

c. The expected value of output (or investment) converges to zero.
In making these arguments, conditions (i)–(iii) of the lemma are used to ensure that consump-

tion is bounded away from zero (prices are bounded above) not only in every period but also 
uniformly over time on sample paths where the output over time is uniformly bounded away 
from zero.

Proof of Lemma 2. Let Y = R+. Fix initial stock y ∈ Y with y > 0. Consider the stochastic 
process of output, consumption and investment {yt(y, ω), ct (y, ω), xt (y, ω)}∞t=0 for ω ∈ �, here-
after written as {yt , ct , xt }, generated by the consumption function c(y).21 Using condition (i) of 
the lemma, yt > 0, ct > 0, xt > 0 for all t ≥ 0. Equality or inequalities involving these random 
variables should be interpreted as holding for all ω ∈ �. Note that {yt , ct , xt } is feasible from y. 
We have to establish that it is optimal from y.

Step 1: Duality and “competitive” properties of the Ramsey–Euler path. Let {y
t
} be the 

deterministic sequence defined by:

y
0
= y, y

t+1
= f (x(y

t
)), t ≥ 0. (11)

Under (T.1) f (.) is nondecreasing on Y . Under condition (ii) of the lemma, x(.) is nondecreasing 
on Y . It is therefore easy to check that for all t ≥ 0:

K(y) ≥ yt ≥ y
t
. (12)

As x(z) > 0 for all z > 0 and (using (T .2)) f (x) > 0 for all x > 0,

y
t
> 0 for all t ≥ 0. (13)

Let {ct } be the sequence defined by:

ct = inf{c(z) : z ∈ [y
t
,K(y)]} for all t ≥ 0. (14)

21 This notational simplification follows a suggestion by two anonymous referees.
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Using (13) and condition (iii) of the lemma, ct > 0 for all t ≥ 0. Further, using (12) and (14), we 
have:

ct = c(yt ) ≥ ct > 0 for all t ≥ 0. (15)

Thus, for every t ≥ 0:

−∞ < u(ct ) ≤ u(ct ) ≤ u(K(y)). (16)

so that for each t , u(ct ) is a bounded Ft -measurable function and has finite expectation.
Using (15), we can define the stochastic price process {pt(y, ω)}, hereafter written as {pt }, 

by:

pt = ρtu′(ct )) for t ≥ 0. (17)

As before, equality or inequalities involving these random variables should be interpreted as 
holding for all ω ∈ �. It follows (from (15)) that for every t ≥ 0,

pt ≤ ρtu′(ct ) < ∞
i.e., pt is a bounded Ft -measurable random variable (and hence integrable) for each t .

For all c ≥ 0, and all t ≥ 0, we have by concavity of u and (17),

ρtu(ct ) − ptct ≥ ρtu(c) − pt c (18)

so that for each t ≥ 0, we have:

Eρtu(ct ) − Eptct ≥ Eρtu(c̃t ) − Ept c̃t (19)

for every bounded Ft measurable random variable c̃t ≥ 0 defined on �. Note that (using (16)), 
Eρtu(ct ) is finite; further, as c̃t is bounded, Eρtu(c̃t ) on the right hand side of (19) is well defined 
though it may be −∞.

Using the Ramsey–Euler condition (RE) and (17), one can see that22:

pt = ρtu′(ct )) = E{pt+1f
′(xt , rt+1)|Ft } (20)

Using the concavity of f (in x) we have for all x ≥ 0 and all t ≥ 0,

f (x, rt+1) − f (xt , rt+1) ≤ f ′(xt , rt+1)(x − xt )

so that:

pt+1f (x, rt+1) − pt+1f (xt , rt+1) ≤ pt+1f
′(xt , rt+1)(x − xt ) (21)

Thus, for every bounded Ft measurable random variable x̃t ≥ 0 defined on �, taking the condi-
tional expectation with respect to Ft in (21) with x = x̃t we get:

E{pt+1f (x̃t , rt+1)|Ft } − E{pt+1f (xt , rt+1)|Ft }
≤ E{pt+1f

′(xt , rt+1)(x̃t − xt )|Ft }
= (x̃t − xt )E{pt+1f

′(xt , rt+1)|Ft } = pt (x̃t − xt ) (22)

22 Strictly speaking, this involves switching from conditional expectation with respect to the distribution function F to 
a conditional expectation with respect to a sub sigma field. Following the suggestion made by an anonymous referee, we 
skip the proof as it is standard.
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where the third line uses the fact that x̃t and xt are Ft measurable and the last line in (22)
uses (20). Transposing terms in (22), for every bounded Ft measurable x̃t ≥ 0, we have:

E{pt+1f (xt , rt+1)|Ft } − ptxt ≥ E{pt+1f (x̃t , rt+1)|Ft } − pt x̃t (23)

so that:

E{pt+1f (xt , rt+1)} − E{ptxt } ≥ E{pt+1f (x̃t , rt+1)} − E{pt x̃t } (24)

Next, one can show that for any feasible stochastic process of output, consumption and invest-
ment {̃yt , ̃ct , ̃xt } from initial stock y, and for every T ∈N

E{
T∑

t=0

ρtu(̃ct )} − E{
T∑

t=0

ρtu(ct )} ≤ E{pT xT } − E{pT x̃T } (25)

To see (25), note that from (19) we have for t ≥ 1

Eρtu(̃ct ) − Eρtu(ct )

≤ Ept̃ct − Eptct = [Ept ỹt − Ept x̃t ] − [Eptyt − Eptxt ]
= [Ept ỹt − Ept−1̃xt−1] + [Ept−1̃xt−1 − Ept x̃t ]

−[Eptyt − Ept−1xt−1] − [Ept−1xt−1 − Eptxt ]
≤ [Ept−1̃xt−1 − Ept x̃t ] − [Ept−1xt−1 − Eptxt ]

where the first inequality uses (19) and the second inequality uses (24).

Step 2: Transversality condition. Next, we come to the main step in the proof where we show 
that the transversality condition:

lim
t→∞ E{ptxt } = 0 (26)

holds. We separate our analysis into two cases:
(i) there is a sequence {yj }∞j=1, with yj > 0, and yj ↓ 0 as j ↑ ∞, such that [f (x(yj ))/yj ] ≥ 1

for all j ∈ N;
(ii) there is θ ∈ (0, K) such that [f (x(y′))/y′] < 1 for all y′ ∈ J ≡ (0, θ).

Case (i): Since y0 = y > 0, we can find n ∈ N, such that y > yn. Fix n. Then, as x(.) is non-
decreasing (condition (ii) of the lemma),

y1 = f (x(y0), r1) ≥ f (x(y0)) ≥ f (x(yn)) = f (x(yn))

yn
yn ≥ yn.

By induction, one can then show that yt ∈ [yn, K(y)] for all t ≥ 0.
Define:

m = inf{c(z) : z ∈ [yn,K(y)]}.
As yn > 0, using condition (iii) of the lemma, we have m > 0. For all t ≥ 0, ct = c(yt ) ≥ m so 
that:

E{ptyt } ≤ E{ρtu′(ct )K(y)} ≤ ρtu′(m))K(y)

and (26) is clearly satisfied.

Case (ii): This is the more difficult case and our proof here proceeds through several sub-steps.
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Sub-step a. A lower bound on the propensity to consume. Letting y ′ ↓ 0, we have x(y′) ↓ 0. 

Using the fact that (by (T.2)(ii)) limx↓0

[
f (x)/x

]
> 1, there exists η > 0 and θ ′ ∈ (0, θ) such 

that, [
f (x(y′))/x(y′)

]
≥ 1 + η for all y′ ∈ J ′ = (0, θ ′]. (27)

Using (27), we have for all y′ ∈ J ′,

1 >
[
f (x(y′))/y′] =

[
f (x(y′))/x(y′)

]
[x(y′)/y′] ≥ (1 + η)[x(y′)/y′] (28)

so that for all y′ ∈ J ′,

[x(y′)/y′] ≤ [1/(1 + η)] < 1 (29)

and consequently, for all y ′ ∈ J ′,

[c(y′)/y′] ≥ [η/(1 + η)] > 0 (30)

Define

M = inf{c(z) : z ∈ [θ ′,K(y)]}
As θ ′ > 0, using condition (iii) of the lemma, M > 0. For y′ ∈ (θ ′, K(y)], we have

c(y′)/y′ ≥ M/K (y) (31)

Using (30) and (31) and noting that 0 < θ ′ < θ < K(y),

[c(y′)/y′] ≥ min{η/(1 + η),M/K(y)} ≡ ζ > 0 for all y′ ∈ (0,K(y)] (32)

Thus, in case (ii), the propensity to consume is bounded away from zero on (0, K(y)].
Sub-step b. An upper bound on the expected price. Define:

δ = min{y/(1 + η), x(θ ′)} (33)

Now, define for t ≥ 0,

A(t) = {ω ∈ � : yt < (δ/2)};D(t) = {ω ∈ � : yt ≥ (δ/2)} (34)

Notice that on D(t), consumption will have a positive lower bound (by Step 1), and so the price 
will be bounded above. On the “problematic” set A(t), consumption can be very small for some 
realizations of the random shock, leading to very high prices for those realizations. The important 
result at this stage is that, nevertheless, the integral of the prices on this set is uniformly bounded 
above. This result is obtained by defining a comparison path, on which the input level is fixed 
at δ, so that consumption absorbs all the effect of the random shocks.

Note that, by (33), δ ≤ y/(1 + η) and so y − δ ≥ ηδ. Also, 0 < δ ≤ x(θ ′), and so:

[f (δ)/δ] ≥ [f (x(θ ′))/x(θ ′)] ≥ 1 + η. (35)

where the second inequality in (35) follows from (27).
Now, define the stochastic process of output, consumption and investment {y′

t , c
′
t , x

′
t } as fol-

lows:

y′
0 = y0 = y,x′

t = δ, y′
t+1 = f (x′

t , rt+1) for t ≥ 0

c′ = y′ − x′ for t ≥ 0 (36)
t t t
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It is straightforward to verify that {y′
t , c

′
t , x

′
t } is feasible from initial stock y and:

c′
t ≥ ηδ > 0 for all t ≥ 0 (37)

Further, using (25) and (37),

E{pT x′
T } − E{pT xT }

≤ E{
T∑

t=0

ρtu(ct )} − E{
T∑

t=0

ρtu(c′
t )}

≤ E{
T∑

t=0

ρtu(K(y))} − E{
T∑

t=0

ρtu(ηδ)}

≤ [u(K(y)) − u(ηδ)]
ρ

≡ Q (38)

Recalling the definitions of A(t) and D(t) for t ≥ 0, we can write:

E[pt {x′
t − xt }] =

∫
A(t)

[
pt {x′

t − xt }
]
P(dω) +

∫
D(t)

[pt {x′
t − xt }]P(dω) (39)

The first integral on the right hand side of (39) can then be evaluated as:∫
A(t)

[
pt {x′

t − xt }
]
P(dω) ≥ (δ/2)

∫
A(t)

ptP (dω) (40)

since x′
t = δ for all t ≥ 0 while xt < (δ/2) on A(t) by (34). The second integral on the right hand 

side of (39) can be evaluated as:∫
D(t)

[pt {x′
t − xt }]P(dω) ≥ −

∫
D(t)

{ptxt )}P(dω)

≥ −ρtu′(ζ(δ/2))K(y) ≥ −u′(ζ(δ/2))K(y) (41)

since on D(t), we have by (32), ct ≥ ζyt ≥ ζ(δ/2), and so pt = ρt u′(ct ) ≤ ρtu′((ζ δ/2)), while 
xt ≤ K(y). Using (40) and (41) in (39), we obtain:

E[pt {x′
t − xt }] ≥ (δ/2)

∫
A(t)

ptP (dω) − u′(ζ(δ/2))K(y)] (42)

Using (42) in (38), we get for all T ∈N,

(δ/2)

∫
A(T )

pT P (dω) ≤ Q + u′(ζ(δ/2))K(y) ≡ Q′ (43)

which can be rewritten as:∫
pT P (dω) ≤ [2Q′/δ] for all T ∈ N (44)
A(T )
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Sub-step c. Establishing the transversality condition. We now proceed to establish (26) as 
follows. Given any ε > 0, we show that there is N ∈N such that:

E{pT xT } ≤ ε for all T ≥ N (45)

To this end, given any ε > 0, we first choose N ∈N with N > 1, such that:

2Q′/N < (ε/2) (46)

where Q′ is defined in (43), and Q in (38). Next, we choose N ∈N, such that:

ρNu′(ζ(δ/N))K(y) < (ε/2) (47)

Now let T ∈N be such that T ≥ N . Define:

A(T ;N) = {ω ∈ � : yT < (δ/N)};D(T ;N) = {ω ∈ � : yT ≥ (δ/N)} (48)

Then, we can write:

E{pT xT } =
∫

A(T ;N)

{pT xT }P(dω) +
∫

D(T ;N)

{pT xT }P(dω) (49)

The first integral on the right-hand side of (49) can be evaluated as:∫
A(T ;N)

{pT xT }P(dω) ≤ (δ/N)

∫
A(T ;N)

pT P (dω)

≤ (δ/N)

∫
A(T )

pT P (dω)

≤ (δ/N)(2Q′/δ) < (ε/2) (50)

where we have used the fact that A(T ; N) ⊂ A(T ) in the second line of (50) [since N ≥ 2], and 
we have used (44) and (46) in the third line of (50).

The second integral on the right-hand side of (49) can be evaluated as:∫
D(T ;N)

{pT xT )}P(dω) ≤ ρT u′(ζ(δ/N))K(y)

∫
D(T ;N)

P (dω)

≤ ρT u′(ζ(δ/N)))K(y)

≤ ρNu′(ζ(δ/N))K(y) < (ε/2) (51)

where in the first line of (51), we have used the fact that on D(T ; N), we have by (32), cT ≥
ηyT ≥ ζ(δ/N), and so pT = ρT u′(cT )) ≤ ρT u′(ζ(δ/N)), while xT ≤ K(y). In the last line of 
(51), we have used T ≥ N , and (47). Using (50) and (51) in (49), we get (45). This establishes 
the transversality condition (26).

Step 3: Optimality. Finally, we show that c(y) is optimal. For any feasible stochastic process of 
output, consumption and investment {̂yt , ̂ct , ̂xt } from initial stock y, the monotone convergence 
theorem23 implies

23 ∑T ρt [u(K(y)) − u(ct )] and 
∑T ρt [u(K(y)) − u(̂ct )] are non-negative and non-decreasing in T .
t=0 t=0
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E

{ ∞∑
t=0

ρtu(̂ct )

}
− E

{ ∞∑
t=0

ρtu(ct ))

}
= lim

T →∞E

{
T∑

t=0

ρtu(̂ct ) −
T∑

t=0

ρtu(ct ))

}
≤ lim

T →∞ sup
[
E{pT xT } − E{pT x̂T }] ≤ 0.

where the first inequality uses (25) and the second inequality uses the transversality condi-
tion (26). Hence, c(y) is optimal. This completes the proof of the lemma. �
5. Non-optimal continuous Ramsey–Euler policy

Our main result shows that in the canonical stochastic optimal growth model analyzed in 
this paper, continuity of a policy function that meets the (Ramsey) Euler condition is necessary 
and sufficient for it to be optimal. However, continuity may not be sufficient for optimality of 
a Ramsey–Euler policy function in an extended version of the same model which allows for 
unbounded expansion of consumption.

We provide below an example of a smooth and convex optimal growth model where a contin-
uous (and monotonic) Ramsey–Euler consumption policy function is not optimal.24 The example 
satisfies all of the assumptions made in this paper with the exception of assumption (T.2)(i). In 
particular, the production technology in this example allows for unbounded expansion of con-
sumption and output.

Example 3. Define the utility function u to be:

u(c) =
√

c

1 + √
c

for all c ≥ 0

Then, u satisfies (U.1). The production technology is deterministic (alternatively, the i.i.d. ran-
dom shocks have a degenerate distribution). The deterministic production function is linear and 
given by

f (x) = 2x

which satisfies (T.1) and (T.2)(ii). The discount factor is chosen to be ρ = (1/2). Consider the 
dynamic optimization problem discussed in Section 2.3. Note that u is bounded with u(c) ∈ [0, 1]
for all c ≥ 0; therefore, the dynamic optimization problem is well-defined and standard dynamic 
programming arguments ensure the existence of an optimal consumption function.

Consider the consumption function defined by:

c(y) =
{

(1/2)y for 0 ≤ y ≤ 2
1 for y > 2

Observe that c(y) is interior and continuous; further, c(y) and y − c(y) are non-decreasing in y. 
We will now show that the consumption function c(·) satisfies the Ramsey–Euler condition (RE). 
For 0 < y ≤ 2, we have c(y) = (1/2)y, and f (y − c(y)) = 2(y − (1/2)y) = y, so that c(f (y −
c(y))) = (1/2)y = c(y). Thus

ρu′(c{f (y − c(y))})f ′(y − c(y)) = 1

2
u′((1/2)y)2 = u′(c(y))

24 The example settles a query raised by an anonymous referee.
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verifying (RE) for y ∈ (0, 2]. For y > 2, we have 2(y −1) = 2y −2 > 2, and so c{f (y −c(y))} =
c{2(y − 1)} = 1. Thus,

ρu′(c{f (y − c(y))})f ′(y − c(y)) = (1/2)u′(c{f (y − c(y))})2
= u′(1) = u′(c(y))

verifying (RE) for y > 2. Finally, we show that c(y) is not an optimal consumption function. To 
see this, consider the consumption function γ (·) defined by:

γ (y) = (1/2)y for all y ≥ 0

Starting from y = 4, the consumption function γ (·) generates a path (ỹt , ̃ct , ̃xt ) where consump-
tion ̃ct = 2 for all t ≥ 0. On the other hand, the path (yt , ct , xt ) starting from y = 4, generated 
by the consumption function c(·), has yt ≥ 4 for all t ≥ 0 and so ct = 1 for all t ≥ 0, so that 
the discounted sum of utilities along the path (yt , ct , xt ) is strictly smaller than along the path 
(ỹt , ̃ct , ̃xt ). This shows that c(·) is not an optimal consumption function.25 This concludes the 
example. �

Example 3 indicates that in order to extend our result to a larger class of dynamic optimization 
problems, one may need to expand the set of conditions that the policy function needs to satisfy.

6. Conclusion

In the standard one sector model of stochastic optimal growth, we have shown that to establish 
that an interior Ramsey–Euler policy function is optimal, it is not necessary to verify the transver-
sality condition; such a policy function is optimal as long it is continuous since this ensures (as 
we have demonstrated in the proof of Theorem 1) that the transversality condition is satisfied. 
Further, continuity is ensured if both consumption and investment are non-decreasing in current 
output and so the latter are also sufficient for an interior Ramsey–Euler policy to be optimal. This 
allows us to state a new set of necessary and sufficient conditions for dynamic optimality that 
should be useful in various applications of the model.

The broad implication of our main result is that in certain stochastic dynamic economic mod-
els it may be possible to verify optimality of a policy function that satisfies the Euler equation 
without verifying that the stochastic process generated by the policy function satisfies a transver-
sality condition as long as certain global properties of the policy function hold. However, the 
precise properties of the policy function that one needs to verify in order to avoid checking 
the transversality condition are likely to depend on the structure of the model. Future research 
should focus on characterizing alternative conditions for optimality in a larger class of dynamic 
optimization models than the one considered in this paper.26

25 One can also check directly that the transversality condition (TC) is violated by the path (yt , ct , xt ) since yt =
[2 + 2t+1], pt = [u′(1)/2t ] for all t ≥ 0.
26 In particular, extension of our results to stochastic growth models where production technologies allow for unbounded 
expansion of output (for instance, Levhari and Srinivasan, 1969; de Hek, 1999; de Hek and Roy, 2001), “unbounded 
shocks” (see, Stachurski, 2002; Nishimura and Stachurski, 2005; Kamihigashi, 2007) and irreversible investment (see, 
Olson, 1989) will be very useful.
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Appendix A

Proof of Lemma 1. For any y1, y2 ∈ R+,

c(y1) − c(y2) = (y1 − y2) − (x(y1) − x(y2))

As c(y) and x(y) are non-decreasing on R+,

0 ≤ c(y1) − c(y2) ≤ (y1 − y2), if y1 ≥ y2

0 ≥ c(y1) − c(y2) ≥ (y1 − y2), if y1 ≤ y2

Thus,

|c(y1) − c(y2)| ≤ |y1 − y2|
which implies that c(y) is continuous.27 �
Some details of Example 2. First, we verify that c(y) is an interior consumption function. On 
A = (0, 4], we have c(y) = (1 − (ρ/2))y, so 0 < c(y) < y, since (ρ/2) ∈ (0, 1) and y > 0. On 
B = (4, ∞), c(y) = (1 − ρ)(y − 4) > 0 since y > 4 and ρ ∈ (0, 1); further c(y) = (1 − ρ)y −
4(1 − ρ) < (1 − ρ)y < y, since ρ ∈ (0, 1), and y > 0.

Next, we show that if the initial stock y ∈ A, then the sequence {yt , ct , xt } generated by c
has the property that yt ∈ A for all t ≥ 0. Similarly, if the initial stock y ∈ B , then the sequence 
{yt , ct , xt } generated by c has the property that yt ∈ B for all t ≥ 0.

The first observation can be seen as follows. For y ∈ A, the investment function is given
by:

x(y) = y − c(y) = (ρ/2)y ∈ A for all y ∈ A

Consequently, we have:

f (x(y)) = 2[x(y)]1/2 = 2(ρ/2)(1/2)y1/2 ∈ A for all y ∈ A

For the second observation, note that for y ∈ B , the investment function is given by:

x(y) = y − c(y) = y − (1 − ρ)(y − 4) = ρy + (1 − ρ)4 ∈ B for all y ∈ B

Consequently, we have:

f (x(y)) = 2 + (1/2)[ρy + (1 − ρ)4] = 2 + 2(1 − ρ) + (1/2)ρy ∈ B for all y ∈ B

Finally, we verify explicitly that the sequence {yt, ct , xt } from y = 5 does not satisfy the transver-
sality condition. In particular, for every t ≥ 0,

ct = (1 − ρ)(yt − 4), xt = ρyt + 4(1 − ρ), yt+1 = ρ

2
yt + 4 − 2ρ

ct+1 = 1

2
ρ(1 − ρ)(yt − 4), xt+1 = ρ2

2
yt + 4 − 2ρ2

From (5) and yt+1 = ρ
2 yt + 4 − 2ρ we have that yt → 4 as t → ∞. In consequence, as t → ∞,

27 This simplified proof was suggested by an anonymous referee.
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ρt+1u′(ct+1)xt+1

ρtu′(ct )xt

= ρ

[
ρ2

2 yt + 4 − 2ρ2
]

[
ρyt + 4(1 − ρ)

] [
(1 − ρ)(yt − 4)

][
1
2ρ(1 − ρ)(yt − 4)

]
= ρ2yt + 4(2 − ρ2)

ρyt + 4(1 − ρ)
→ 2

so that ρtu′(ct )xt diverges to +∞ as t → ∞. �
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